
Problems with Integrating Legacy Systems

Erik M. van Mulligen"2'3, Ronald Comet', Teun Timmers'
'Department of Medical Informatics, Erasmus University Rotterdam, The Netherlands

2University Hospital Dijkzigt Rotterdam, The Netherlands
3Netherlands Institute of Health Sciences, The Netherlands

The economic and organizational impact of
imposing state-of-the-art technology to the large
number of proprietary legacy systems operational in
most hospitals requires integrated clinical
professional workstations to provide flexible
encapsulation mechanisms for these systems rather
than reengineering these systems to this new
technology. In this paper the implications of
different input/output and translation models of
legacy systems for their integration into a clinical
workstation is described. Examples of legacy
systems that have been integrated in the HERMES
clinical workstation are presented as examples of
the range of difficulties one might encounter. The
features that an integrated workstation should offer
for integrating a broad range of legacy systems are
also addressed in this paper.

INTRODUCTION

Post-factum Integration
The increasing number of publications around the
clinical professional's workstation might be used to
measure the maturity of hardware, software, and
network technology to accomplish this dream.
However, when reading these publications carefully
to see what general methods are used to build such
a clinical workstation, it becomes clear that most of
these publications describe an actual implementation
or prototype [1,2]. Although post-factum integration
of legacy systems is a hard problem, it is generally
seen as an essential feature for a (clinical)
workstation to be of practical use [3,4,5]. The
financial and organizational hazards of changing a
full clinical computing environment into an open
environment are too large for most medical
institutions; moreover, who is going to guarantee
that this new workstation technology will be up-to-
date for a certain time, and that new revolutions
will not occur?

Domain Specificity
Typically, the clinical workstations described in the
last 3 years are very bound to the hardware,

0195-4210/95/$5.00 1995 AMIA, Inc.

software, and network that they have been
developed for and their transfer to other domains
and environments can not be realized unless one re-
implements the workstation. This dependency
phenomenon not only holds for clinical
workstations, but is a generally recognized problem
in computer science. In the last decades, a number
of strategies have been developed that minimize the
effect of this phenomenon and improve the
independency: standardization, layering, client-
server approach, and brokering (i.e. a dynamic
binding between a client that requires a specific
function and a selected server from a set of servers
that provide that function).

Strategies to improve Independency
Although some standards may work in the
construction of workstations, it is recognized that
standards evolve with the progression of hard- and
software. Connecting components in a workstation
using standards prohibits individual components to
follow new standards and thus minimizes the
flexibility of the clinical computing facilities. An
excellent example of how layering can be applied is
the OSI network architecture. The idea is that the
functionality (and the standards) of each layer can
be changed without having an effect to the lower
and higher layers if the layer interface remains the
same. This method is often applied to the
construction of network communication software.
The client-server approach resembles layering, only
each layer has become an independent process in
the network. The client (a higher layer) requests
through a specified interface (also called
Application Programming Interface) a server (a
lower layer) to perform a particular function. The
server can be changed independently of the client
and use the best known standards and technology of
that time. The advantage of client-server over
layering is its possible distribution through the
network and the fact that a change in a server does
not require the client to be recompiled (as with
layering). Brokering extends the client-server
approach in the sense that the client is freed from

747



knowing which server to address for a particular
function. In addition to this, brokering can also be
used to enable clients to communicate with services
that have new, extended APIs by mapping the
client's notion of the service API to the server's
actual API.

Encapsulators
In the HERMES project we explored the above
mentioned methods to see what is best suitable in
constructing a clinical workstation that can be easily
tailored for multiple sites and that communicates
with the legacy systems present in the clinical
computing environment [6,7]. In the HERMES
environment, workstation components are
communicating with each other through a brokering
process. This broker provides all the features
outlined above and uses an object database that
exactly describes all requests, APIs, services, hosts,
and users. One important architectural feature of
HERMES is the so-called encapsulator. This piece
of software interfaces with the legacy system and
provides other workstation components a true open
system access (with an API that is accessible
through the network). In fact, this encapsulator layer
(See Figure 1) makes the system dependent on a
particular computing environment. All other
components are only relying on XOPEN UNIX,
TCP/IP, Berkeley Sockets, and XII with OSF/-
Motif. In this paper, we will not extend on the full
HERMES environment, but describe a number of
encapsulators in detail, discuss properties and
problems with the interfaces to legacy systems and
try to establish a generic architecture for an
encapsulator.

,,, > WY

Figure 1. The HERMES integration architecture
with the encapsulation and legacy system layer.

METHODS

Legacy systems can behave to the workstation
encapsulator either as a process or as a session. In
the case of a process, the workstation will spawn a
new process of the legacy system; both the start and
the end of the processing of the legacy system are
controlled by the encapsulator. In the case of
session orientation, the workstation has to attach to
a running process often through a user authentifica-
tion phase. This behavior of the legacy system has a
great influence on the architecture of the
encapsulator.

Interface Mechanisms
An encapsulator provides to workstation
components an API that can be addressed by
sending a request message to a specific network
port by using the TCP/IP network protocol.
Requests received by the stub are translated by the
encapsulator's command generator into a series of
instructions for the legacy system it is interfacing.
Data that are passed with the request are
reformatted by the data translator for the legacy
system (see Figure 2).

Figure 2. Architecture and modules contained in a
generic legacy system encapsulator.

There are a number of options for interfacing the
legacy system:
- batch. A batch file containing both the

instructions and the data are passed to the legacy
system when starting it. Results can be collected
in an output file. This mode is in general only
applicable for legacy systems that are started by
the encapsulator as a new process.

- keystrokes (and mouse clicks). The encapsulator
simulates a user and generates keystrokes and
possibly mouse clicks as though the user interacts
with the application. The input to the legacy

748

LA." - I I lim.-M.M.M.-
l-~~~~~~~~~~~~~~~~~~~~~~~~1

POST 71,11:11. I I. - I

SK
Wak
Pod

sockok
BERbES

*M LAB IVr I SjW I -- --j"am 4w



system can either go through a (Unix) pipe to the
standard input of the legacy system or by setting
up a pseudo-terminal that creates new I/O
streams. The latter can be used for legacy
systems that directly connect to (terminal) devices
rather than using operating system facilities.
Interfacing through keystrokes can be used for
both process and session oriented legacy systems.

- communication line. Typically, when a legacy
system is not capable of handling TCP/IP
network communication, a solution is to connect
the system by a RS232 communication line to a
computer that is able to handle TCP/IP network
communication. Typically this approach is used
for session oriented legacy systems.

Output Mechanisms
Output generated by a legacy system should be
filtered by the encapsulator's output filter before
returning it to the requesting client. The output can
either be collected in a file by (1) specifying an
output filename if that is supported by the legacy
system, or (2) by redirecting the screen output to a
file (operating system feature) or to a filter process.
Because of the absence of an end-of-output marker
in the session oriented legacy systems, the output of
this kind of legacy system can only be caught by a
filter process that determines the end-of-output
itself.

Stateless vs. Stateful
If a server process returns to an identical state after
each request processed, it is called stateless
communication, else stateful. Interaction with most
legacy systems requires a stateful server. Therefor,
it might be useful to remain connected to either a
legacy system session or process for a workstation.
New requests can use the results of previous
requests and rely on a so-called context. However,
allowing stateful encapsulators next to the usual
stateless encapsulators forces additional
requirements to the workstation communication
architecture. A stateless encapsulator and its
associated legacy system return to the initial state
after each request processed. So, each client can
assume the initial state when sending a request.
With a statefull encapsulator however, a particular
context is generated of which the client should be
aware.

Exclusive threads
As a consequence, for statefull components it is
essential to support a notion of exclusive
communication threads. An exclusive thread

connects two workstation components and prohibits
other components to use that same thread (partly)
for communication. Each other component that
wants to access a function in the statefull
component has to set up its own exclusive thread
with its own private server component (and legacy
system). If it is not possible to have several legacy
system processes or sessions connected at the same
time, the workstation architecture should provide
mechanisms for serializing requests and/or locking
encapsulators (see Figure 3).

clients servers
Single-lteaded,
shared, stateless

Hermes

clients servers

Multi-threade
exclusive, statefil

Figure 3. Examples o
server communication.

of shared and exclusive client-

Examples of encapsulators
In the HERMES project, a number of encapsulators
have been constructed for a variety of legacy
systems of which the following will be outlined: a
statistical package, a graphical presentation package,
SQL databases, a hospital information system,
departmental information system, and an ECG
management system.

- Statistical package BMDP (Unix); this package is
encapsulated as a batch oriented legacy system
process. For each client that issues a request, a
new process is spawn. The input consists of a
command file and a data file. A meta-description
file describes the command syntax of BMDP and
is used by the encapsulator to generate a correct
command file. The encapsulator maintains a list

749



of the variables contained in the data file together
with the names as generated for BMDP
(maximum of 8 characters). Output is generated
by the legacy system in a file, which is filtered
by the encapsulator. In this step, the encapsulator
also transforms the names of the variables back to
the original ones. The dependency of the output
format on the values of elements in the output
makes the filter rather complicated.

* Graphical spreadsheet package WingZ (Unix).
Informix provides a macro language called
HyperScript in which all keystrokes can be
described as commands together with the data.
Output is graphical and can not be written into a
file. The encapsulator is statefull; after issuing the
command for a graphical presentation, the system
is loaded with the data and can use that for other
presentations. Requests from other components
for a graphical presentation are denied because of
the single-user license.

* SQL databases (Unix and VMS). Although there
is a reasonable standard, SQL, for querying
databases, there are quite some differences in
implementation (Oracle, Ingres, Interbase). All
these differences are "solved" by the encapsulator.
Some of the differences are due to the fact that
the SQL interpreter uses special symbols to
terminate commands etc. Other differences are
caused by the way the DBMS is addressed: by
embedded SQL or by a SQL interpreter.
Although the output formats differ, they are quite
regular and easy to program in an output filter.
Note that it is more efficient to use a filter
process than to write the selected data to a file
and subsequently filter it. Most of the problems
were caused by the fact that the output did not
contain full attribute names due to the fact that
the column width was not large enough. Special
attention was paid to how to detect errors in the
processing. To ensure the authentification
procedures of the underlying DBMS, a special
login screen has been implemented to enter these.
Some DBMSs however used the (Unix) login
name for authentification.

BAZIS HIS hospital information system. The
encapsulator for this system uses an RS232
connection with a micro-vax (effective data rate
of 300 baud). A special communication protocol
(PERI) has been developed to issue requests and
retrieve a small restricted dataset. This protocol
uses a number for the data-set, a number for the

patient and a byte offset for the bytes in the
patient record one wants to retrieve. The
encapsulator translates a local dictionary of
attribute names to this data-set number and byte
offset. Conditions are evaluated at the
encapsulator, meaning that the complete data-set
has to be retrieved. This approach is very
sensitive to changes; any change in the offset of a
particular variable in the patient record requires
the encapsulators tables to be (manually) updated.

- Mumps departmental information system. In order
to connect the Mumps system with TCP/IP, a PC
was used to run DDP-DOS. With this product,
the PC translates TCP/IP messages to the Mumps
environment and vice versa. In the encapsulator,
incoming requests are serialized and forwarded to
the PC. The output is interpreted by a pipe
process and returned to the client. The Mumps
system provides the encapsulator with a
dictionary of the requests each time it is
connected. This allows for changes at the Mumps
side without having to inform the encapsulator.

- Mortara ECG management system (Unix). The
encapsulator for this systems runs on the same
computer where the database is stored. The
encapsulator uses a set of functions provided by
the vendor through which the ECG database can
be accessed. This approach is very efficient and
allows the encapsulator to be process oriented.

Working Experiences
At this moment, a number of applications have been
realized using the HERMES environment. A clinical
workstation for the outpatient clinic heart failure
integrates data from several clinical information
systems and ECGs, angiograms and ultrasound
images in a computer-based patient record. A
similar approach has been followed for an
application in andrology. A separate workstation
application has been developed for clinical data
analysis. Access to clinical information systems and
commercial database management systems is
combined with a range of statistical and graphical
presentation functions provided by commercial
statistical and presentation packages. A third type of
application is developed by a third party for people
involved in occupational healthcare.

CONCLUSION

The construction of encapsulators for a range of
legacy systems helps to recognize what the

750



difficulties are in developing generic encapsulators.
The following features were found to play an
important role in the success of opening a legacy
system with an encapsulator:
- the operation model; if the legacy system can be

started upon request by the workstation
encapsulator, the normal multi-thread model of
client-server computing can be provided. If the
legacy system is however an active process that
needs to be attached by the encapsulator and
there are only a maximum number of sessions
allowed (per user), the multi-thread model will
fail and a locking or serializing mechanism must
be supported by the encapsulator. In the operation
model, special features like communication
through a serial line or a special interface
computer should be accounted for.

- the input mechanism; the easiest systems to
embed are those that use an explicit control
language and support batch-file input. Generating
keystrokes (and mouse-clicks) requires the legacy
system to use the normal input/output channels
and is strongly relying on operating system
features and reliability of the keystroke generator.
Typically the speed of keystroke input
mechanisms is rather slow. For some legacy
systems, variable labels have to be cut to a
specific length and consist only of a particular set
of symbols. For the encapsulator this implies that
it should maintain a mapping between the actual
labels and the labels as provided in the request.

- the output mechanism; Important to know is when
the legacy system is ready with producing output.
For systems that use a batch inputfile, the end of
output is mostly indicated by the termination of
the legacy system process. For legacy systems
that generate an output file, this might be
indicated by an end-of-file sign. For filtering
processes that use a pipe mechanism for catching
the legacy system's output, it can be difficult to
determine the end of a transaction by the legacy
system. Two other aspects directly complicate an
encapsulator: (1) the lack of an explicit data-
model that is passed with the data, and (2)
dependency of the output format of the values of
output variables.

- transaction model; if the operation of the legacy
system demands an operation context, it might be
efficient to leave the context intact and use it for
further requests. However, this implies that the
client is informed about the state of the
encapsulator and excludes the HERMES feature
to share an encapsulator session with different
clients.

DISCUSSION

When constructing a generic encapsulator, it should
be noted that these generic facilities of the
encapsulator have to be able to cover all the above
features. Three subparts can be clearly discerned
when constructing an encapsulator: a command
generator, a data translator, and an output filter. For
further dissemination of this encapsulator
technology, it is important to provide software
developers with tools that assist them in creating the
subparts of the encapsulator. And for those
environments where already a host of legacy
systems exist, this encapsulation technology makes
it possible to have clinical workstations really
integrated with these systems.

References

[1] Hammond JE, et. al. Report on the Clinical
Workstation and Clinical Data Repository
Utilization at UNC Hospitals. In: Proceedings
of the 18th Annual Symposium on Computer
Applications in Medical Care. 1994;276-80

[2] Young CY, Tang PC, Annevelink J. An Open
Systems Architecture for Development of a
Physician's Workstation. In: Proceedings of the
15th Annual Symposium on Computer
Applications in Medical Care. 1991;491-5

[3] Fournier F. The MINI Software Factory:
Development of Kernel Mechanisms around
Process Modeling and Software Bus
Techniques. Journal of Systems Integration,
1992;2: 145-67

[4] Rossak W, Ng PA. Some Thoughts on
Systems Integration: A Conceptual
Framework. Journal of Systems Integration,
199 1;1:97-114

[5] Power LR. Postfacto integration technology:
New discipline for an old practice. In:
Proceedings of the 1st Conference on Systems
Integration. 1990;4- 13

[6] Van Mulligen EM, Timmers T, Van Bemmel
JH. A new architecture for integration of
heterogeneous software components. Methods
of Information in Medicine 1993;32:292-301

[7] Van Mulligen EM, Timmers T, Brand J,
Cornet R, Van den Heuvel F, Kalshoven M,
Van Bemmel JH. HERMES: a health care
workstation integration architecture. Int. J.
Biomed. Comput. 1994;34:267-75

0195-4210/95/$5.00 C 1995 AMIA, Inc. 751


